Share this
Harnessing Sunlight: A Comprehensive Guide to Solar PV Systems for Sustainable Architecture
by Sean Hill on Mar 18, 2023
Over the years, I have come to appreciate the significant potential of solar electricity panels, also known as photovoltaics (PV), as a renewable energy solution for homeowners.
Chapter 1: Understanding Solar Panels and How They Work
Solar panels consist of many cells made from layers of semi-conducting material, most commonly silicon. When light shines on this material, a flow of electricity is created. Solar PV systems are made up of several panels, with each panel generating around 355W of energy in strong sunlight. The electricity generated is direct current (DC), which is converted to alternating current (AC) by an inverter for use in household appliances or exported to the grid.
Chapter 2: Key Considerations Before Installing Solar Panels
Space is a key consideration for the installation of solar panels. The average system size is around 3.5kWp and this typically requires around 20m2 roof area. An unshaded, South-facing roof is ideal for maximum electrical output. East or West facing roofs can still be considered, although they yield around 15-20% less energy. North-facing roofs are not recommended. It’s essential to assess shading on the roof as nearby buildings, trees, or chimneys could have a negative impact on the performance of the solar PV system.
Chapter 3: Solar Panel Registration and Permissions
Solar PV panels are generally considered ‘permitted developments’ and often don’t require planning permission. However, exceptions apply, and it’s best to check with the local planning office or architect studio for guidance. Registration with the Distribution Network Operator (DNO) is also required. In most cases, the installer will handle the registration process.
Chapter 4: Potential Benefits of Solar Electricity
Solar panels offer various benefits to homeowners. Sunlight is free, and once the initial installation costs are covered, electricity costs are significantly reduced. Solar electricity is also low carbon, renewable energy, which can help reduce the carbon footprint. A typical home solar PV system could save around one tonne of carbon per year, depending on the location.
Chapter 5: Making the Most of Solar Energy
To maximize the benefits of a solar PV system, it’s essential to be mindful of electricity consumption. Reducing electricity use can lower bills and carbon footprint. It’s a good idea to run electrical appliances during daylight hours when the solar PV system is at its peak. Furthermore, solar PV systems can be combined with other renewable technologies such as heat pumps or solar hot water systems for even greater benefits.
Chapter 6: Using PV Diverter Switches
PV diverter switches are a useful tool for increasing the consumption of solar electricity generated by a solar PV system. These switches can divert surplus electricity to power the immersion heater in the hot water tank, storing hot water for later use. While excess solar energy may not meet all hot water needs, it can help reduce bills.
Chapter 7: Costs and Potential Savings
The average domestic solar PV system costs around £7,000, and costs vary depending on factors such as array size, roof access, and panel choice. The amount of savings that homeowners can achieve by using the electricity generated varies based on factors such as working from home, the number of people at home during the day, and whether cooking is done using electricity.
Chapter 8: Export Payments and Incentives
For surplus electricity exported to the grid, homeowners can receive export payments. After the closure of the Feed-in Tariff scheme, the Smart Export Guarantee (SEG) was introduced to provide financial support to small-scale renewable energy generators. The savings from solar PV with the SEG are considerably higher than without it.
Chapter 9: Maintenance and Longevity of Solar PV Systems
Solar PV systems require little maintenance, but some attention is needed. Monitoring nearby trees to prevent overshadowing and occasional cleaning may be necessary. The panels typically last 25 years or more, but the inverter may need replacement during this period. Monitoring system performance and weather conditions is essential for understanding system health.
Chapter 10: Investing in Solar Energy for a Sustainable Future
Solar energy is a key component of a sustainable future. With minimal maintenance, solar panels provide long-lasting benefits that reduce electricity bills and carbon footprint. Incorporating solar PV systems into architectural designs can create energy-efficient homes that contribute to a more sustainable future.
Conclusion
We highly recommend considering solar energy as part of a holistic approach to sustainable and energy-efficient design. By incorporating solar PV systems into your architectural projects, you contribute to a more sustainable future and provide homeowners with the tools to reduce their carbon footprint and electricity costs.
If you would like to talk through your project with the team, please do get in touch at mail@risedesignstudio.co.uk or give us a call on 020 3949 8471
RISE Design Studio Architects company reg no: 08129708 VAT no: GB158316403 © RISE Design Studio. Trading since 2011.
Share this
- Architecture (144)
- Sustainable architecture (83)
- Design (66)
- Retrofit (55)
- Passivhaus (53)
- London (51)
- New build (48)
- Renovation (41)
- energy (38)
- interior design (37)
- Sustainable Design (33)
- Planning (32)
- Environment (31)
- Building materials (30)
- climate-change (29)
- Inspirational architects (27)
- Refurbishment (27)
- extensions (27)
- Building elements (22)
- Inspiration (21)
- Rise Projects (16)
- enerphit (16)
- net zero (13)
- Extension (12)
- General (12)
- Philosophy (12)
- Carbon Zero Homes (11)
- Working with an architect (10)
- architects (10)
- Awards (9)
- London Architecture (8)
- RIBA (8)
- architect (8)
- Innovative Architecture (7)
- Airtightness (6)
- Eenergy efficiency (6)
- Uncategorized (6)
- Virtual Reality (6)
- RISE Sketchbook Chronicles (5)
- Sustainable (5)
- cinema design (5)
- ARB (4)
- BIM (4)
- Basement Extensions (4)
- concrete (4)
- local materials (4)
- modular architecture (4)
- working from home (4)
- Carbon Positive Buildings (3)
- Home improvement (3)
- Passive house (3)
- Permitted development (3)
- Planning permission (3)
- Property (3)
- circular economy (3)
- construction (3)
- mvhr (3)
- natural materials (3)
- plywood (3)
- structural (3)
- structuralengineer (3)
- Artificial Intelligence (AI) (2)
- Bricks (2)
- Building in the Green Belt (2)
- Costs (2)
- Covid-19 (2)
- Heat Pumps (2)
- Home extensions (2)
- Permitted development rights (2)
- Roof extension (2)
- Welbeing (2)
- ashp (2)
- barcelona (2)
- building information modelling (2)
- co-working (2)
- design&build (2)
- furniture (2)
- glazed-extensions (2)
- green architecture (2)
- greenbelt (2)
- historic architecture (2)
- light (2)
- living space (2)
- london landmarks (2)
- londoncinemas (2)
- openingupworks (2)
- peter zumthor (2)
- rammed earth (2)
- self build (2)
- sustainability (2)
- sustainable building (2)
- traditional (2)
- trialpits (2)
- #NLANetZero (1)
- 3D Printing (1)
- 3D models (1)
- Adobe (1)
- Alvar (1)
- Architecture Interior Design (1)
- Area (1)
- Art (1)
- BIMx (1)
- BREEAM (1)
- Bespoke lighting (1)
- Birmingham Selfridges (1)
- Boat building (1)
- Boats (1)
- Brass (1)
- Brexit (1)
- Building energy (1)
- Casting (1)
- Chailey Brick (1)
- Chartered architect (1)
- Commercial Architecture (1)
- Copper (1)
- Czech Republic, (1)
- David Lea (1)
- Dormer extension (1)
- Ecohouse (1)
- Fees (1)
- Flooding (1)
- Furniture design (1)
- Gandhi memorial museum (1)
- Garden studio (1)
- Green Register (1)
- Green infrastructure (1)
- History (1)
- House cost (1)
- India (1)
- Jan Kaplický (1)
- Kitchen Design (1)
- L-shaped dormer (1)
- Land value (1)
- Loft conversion (1)
- Lord's Media Centre (1)
- Mapping (1)
- Marseilles (1)
- Mary Portas (1)
- Metal (1)
- Micro Generation (1)
- Monuments (1)
- Party Wall Surveyor (1)
- Place (1)
- Porch (1)
- Prefab (1)
- Procurement (1)
- Residential architecture (1)
- Richard Rogers (1)
- Sand (1)
- Scandinavian architecture (1)
- Selfbuild (1)
- Social Distancing (1)
- Social housing (1)
- Spain (1)
- Steel (1)
- Surveying (1)
- Sverre fehn (1)
- VR (1)
- West london (1)
- Wildlife (1)
- Wood (1)
- architect fees (1)
- architectural details (1)
- arne jacobsen (1)
- avant garde (1)
- backland (1)
- basements (1)
- brentdesignawards (1)
- building design (1)
- building regulations (1)
- built environment (1)
- carbonpositive (1)
- cement (1)
- charles correa (1)
- charles eames (1)
- charlie warde (1)
- charteredarchitect (1)
- climate (1)
- climate action (1)
- codes of practice (1)
- collaboration (1)
- constructioncosts (1)
- country house (1)
- countryside (1)
- covid (1)
- dezeenawards (1)
- drone (1)
- eco-living (1)
- emissions (1)
- epc (1)
- finnish architecture (1)
- foundations (1)
- futuristic (1)
- georgian architecture (1)
- glazed envelope (1)
- good working relationships (1)
- green building (1)
- hampstead (1)
- happiness (1)
- health and wellbeing (1)
- home extension (1)
- homesurveys (1)
- house extension (1)
- imperfection (1)
- independentcinemas (1)
- innovation (1)
- inspirational (1)
- insulation (1)
- interiorfinishes (1)
- internal windows (1)
- jean prouve (1)
- kindness economy (1)
- kintsugi (1)
- landscape architecture (1)
- lime (1)
- listed buildings (1)
- local (1)
- lockdown (1)
- low carbon (1)
- mansard (1)
- manufacturing (1)
- materiality (1)
- modern architecture (1)
- moderninst (1)
- modernism (1)
- moulded furniture (1)
- natural (1)
- natural cooling (1)
- natural light (1)
- nordic pavilion (1)
- northern ireland (1)
- palazzo (1)
- placemaking (1)
- planningpermission (1)
- plywood kitchen (1)
- post-Covid (1)
- poverty (1)
- powerhouse (1)
- preapp (1)
- preapplication (1)
- project management (1)
- ray eames (1)
- reclaimed bricks (1)
- recycle (1)
- renewable energy (1)
- reuse (1)
- ricardo bofill (1)
- rooflights (1)
- room reconfiguration (1)
- rural (1)
- satellite imagery (1)
- selfbuildhouse (1)
- shared spaces (1)
- site-progress (1)
- solarpvs (1)
- space (1)
- stone (1)
- structuralsurvey (1)
- sun tunnel (1)
- sustainable materials (1)
- terraces (1)
- thegreenregister (1)
- totality (1)
- wabi-sabi (1)
- waste (1)
- wooden furniture (1)
- zero waste (1)
- November 2024 (3)
- October 2024 (5)
- June 2024 (1)
- May 2024 (1)
- March 2024 (1)
- February 2024 (1)
- January 2024 (2)
- November 2023 (1)
- October 2023 (5)
- September 2023 (7)
- August 2023 (7)
- July 2023 (6)
- June 2023 (8)
- May 2023 (14)
- April 2023 (11)
- March 2023 (8)
- February 2023 (6)
- January 2023 (5)
- December 2022 (3)
- November 2022 (3)
- October 2022 (3)
- September 2022 (3)
- July 2022 (2)
- June 2022 (1)
- May 2022 (1)
- April 2022 (1)
- March 2022 (1)
- February 2022 (2)
- January 2022 (1)
- November 2021 (1)
- October 2021 (2)
- July 2021 (1)
- June 2021 (1)
- May 2021 (1)
- April 2021 (1)
- March 2021 (1)
- February 2021 (1)
- January 2021 (2)
- December 2020 (1)
- November 2020 (1)
- October 2020 (1)
- September 2020 (2)
- August 2020 (1)
- June 2020 (3)
- April 2020 (3)
- March 2020 (2)
- February 2020 (3)
- January 2020 (1)
- December 2019 (1)
- November 2019 (2)
- September 2019 (1)
- June 2019 (1)
- April 2019 (2)
- January 2019 (2)
- October 2018 (1)
- September 2018 (1)
- August 2018 (2)
- July 2018 (1)
- March 2018 (1)
- February 2018 (2)
- December 2017 (1)
- September 2017 (1)
- May 2017 (1)
- January 2017 (1)
- December 2016 (1)
- November 2016 (1)
- September 2016 (1)
- August 2016 (2)
- June 2016 (2)
- May 2016 (1)
- April 2016 (1)
- December 2015 (1)
- October 2015 (1)
- September 2015 (1)
- August 2015 (1)
- June 2015 (1)
- January 2015 (1)
- September 2014 (2)
- August 2014 (1)
- July 2014 (4)
- June 2014 (9)
- May 2014 (2)
- April 2014 (1)
- March 2014 (1)
- February 2014 (1)
- December 2013 (1)
- November 2013 (5)
- October 2013 (5)
- September 2013 (5)
- August 2013 (5)
- July 2013 (5)
- June 2013 (2)
- May 2013 (2)
- April 2013 (4)
- March 2013 (5)
- February 2013 (2)
- January 2013 (3)